A note on extension of sliced average variance estimation to multivariate regression

نویسندگان

  • Jae Keun Yoo
  • Keunbaik Lee
چکیده

Rand Corporation, Pittsburgh, PA 15213 e-mail: [email protected] Abstract: Many sufficient dimension reduction methodologies for univariate regression have been extended to multivariate regression. Sliced average variance estimation (SAVE) has the potential to recover more reductive information, and recent development enables us to test the dimension and predictor effects with distributions commonly used in the literature. The main purpose of the paper moves the functionality of SAVE to multivariate regression. For this, three methods are proposed. The asymptotic behaviors ∗Corresponding author

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On model-free conditional coordinate tests for regressions

Existing model-free tests of the conditional coordinate hypothesis in sufficient dimension reduction (Cook (1998) [3]) focused mainly on the first-order estimation methods such as the sliced inverse regression estimation (Li (1991) [14]). Such testing procedures based on quadratic inference functions are difficult to be extended to second-order sufficient dimension reduction methods such as the...

متن کامل

Asymptotics for sliced average variance estimation

In this paper, we systematically study the consistency of sliced average variance estimation (SAVE). The findings reveal that when the response is continuous, the asymptotic behavior of SAVE is rather different from that of sliced inverse regression (SIR). SIR can achieve √ n consistency even when each slice contains only two data points. However, SAVE cannot be √ n consistent and it even turns...

متن کامل

Likelihood-based Sufficient Dimension Reduction

We obtain the maximum likelihood estimator of the central subspace under conditional normality of the predictors given the response. Analytically and in simulations we found that our new estimator can preform much better than sliced inverse regression, sliced average variance estimation and directional regression, and that it seems quite robust to deviations from normality.

متن کامل

Sufficient Dimension Reduction With Missing Predictors

In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the sub...

متن کامل

On the distribution of the left singular vectors of a random matrix and its applications

In several dimension reduction techniques, the original variables are replaced by a smaller number of linear combinations. The coefficients of these linear combinations are typically the elements of the left singular vectors of a random matrix. We derive the asymptotic distribution of the left singular vectors of a random matrix that has a normal limit distribution. This result is then used to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008